C.U.SHAH UNIVERSITY

Summer Examination-2017

Subject Name: Problem Solving-I

Subject Code: 5SC02PRS1 Branch: M.Sc. (Mathematics)

Semester: 2 Date: 06/05/2017 Time: 02:00 To 05:00 Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION - I

Q-1 Answer the Following questions: (07)

a. Solve:
$$y + p^2 = xp$$
 (02)

b. Transform
$$x^2y'' - 2xy' + 2y = 0$$
 into a self adjoint equation. (02)

C. Suppose T be the linear operator on
$$R^3$$
 defined by
$$T(x_1, x_2, x_3) = (3x_1 + x_3, -2x_1 + x_2, -x_1 + 2x_2 + 4x_3) \text{ then } T \text{ is invertible.}$$

d. The function
$$f(z) = \overline{z}$$
 is not analytic at any point. – True or False? (01)

Q-2 Attempt all questions (14)

a. For the Strum-Lioville problem
$$X'' + \lambda X = 0$$
, $X(0) = 0$, $X(\pi) = 0$ obtain the eigenfunctions and the corresponding eigenvalues. (07)

b. Find modulus and argument of
$$z = \frac{\left(3 - \sqrt{2}i\right)^2}{1 + 2i}$$
. (04)

c. Find the value class of the quadratic form
$$6x_1^2 + 3x^2 + 3x_3^2 - 4x_1x_2 - 2x_2x_3 + 4x_3x_1$$
. (03)

OR

Q-2 Attempt all questions (14)

a. Solve: i)
$$(2x \log x - xy) dy + 2y dx = 0$$
 (04)

ii)
$$(D^2 - 4D + 4)y = xe^{2x}$$
 (03)

Page 1 of 4

b. Find the characteristic and minimal polynomial of
$$A = \begin{bmatrix} 4 & -2 & 2 \\ 6 & -3 & 4 \\ 3 & -2 & 3 \end{bmatrix}$$
. **(04)**

c. Separate
$$tan^{-1}(x+iy)$$
 into real and imaginary parts. (03)

Q-3 Attempt all questions

(14)

a. If
$$\frac{dy}{dx} + 2y \tan x = \sin x$$
 and $y\left(\frac{\pi}{3}\right) = 0$ then find the maximum value of $y(x)$. (04)

- **b.** If S is defined by the rectangle $|x| \le a$, $|y| \le b$ then show that the function $f(x, y) = x \sin y + y \cos x$ satisfy the Lipschitz condition. Find the Lipschitz constant. (03)
- c. Let V(R) be the vector space of all complex no a+ib over the field of R and let T be a mapping from V(R) to $V_2(R)$ defined by T(a+ib)=(a,b) then prove that T is isomorphism.

d. Prove that
$$\tan^{-1} z = \frac{i}{2} \log \left(\frac{i+z}{i-z} \right)$$
 (03)

OR

Q-3 Attempt all questions

(14)

a. Solve:
$$\frac{dy}{dx} = \frac{x + 2y - 3}{2x + y - 3}$$
 (04)

- **b.** Show that the function $y(x) = cx^2 + x + 3$ is not an unique solution of the initial value problem $x^2y'' 2xy' + 2y = 6$ with y(0) = 3, y'(0) = 1 on $(-\infty, \infty)$.
- c. Find inverse of matrix by Gauss Jordan method, where $A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & 2 & 1 \end{bmatrix}$. (04)
- **d.** If $u = \log \tan \left(\frac{\pi}{4} + \frac{\theta}{2} \right)$ then prove that $\tanh \left(\frac{u}{2} \right) = \tan \frac{\theta}{2}$. (03)

SECTION - II

Q-4 Answer the Following questions:

(07)

a. If $T: P_2(R) \to P_3(R)$ defined by $T(f(x)) = 2f'(x) + 3\int_0^x f(t) dt$ then find rank of T. (02)

b. Prove that the system of three vectors (1,3,2), (1,-7,-8)&(2,1,-1) of $V_3(R)$ is linearly dependent. (02)

c. The value of the integral
$$\int_C \frac{dz}{z(z-2)}$$
, $C:|z|=1$ is _____. (02)

d. Find the real part of $(\sin x + i\cos x)^7$. (01)

(14)

(14)

(04)

(14)

Q-5 Attempt all questions

a. Find A^{-1} by using Cayley-Hamilton theorem, where $A = \begin{bmatrix} 4 & 3 & 1 \\ 2 & 1 & -2 \\ 1 & 2 & 1 \end{bmatrix}$. (05)

b. Using Cauchy's theorem, evaluate
$$\iint_C \frac{2z-3}{z^3-3z^2+4} dz$$
, where C is the circle (05)

i)
$$|z| = \frac{3}{2}$$
 and ii) $|z - 3| = 2$.

c. Find Taylor's expansion of $f(z) = \frac{2z^3 + 1}{z^2 + z}$ about the point z = i. (04)

OR

Q-5 Attempt all questions

a. Write the Jordan canonical form of $\begin{bmatrix} 7 & 4 & -1 \\ 4 & 7 & -1 \\ -4 & -4 & -4 \end{bmatrix}$. (05)

b. Using Cauchy's integral formula, evaluate $\iint_C \frac{z^4}{(z+1)(z-i)^2} dz$, where *C* is the ellipse $9x^2 + 4y^2 = 36$.

c. Check whether the following functions are analytic or not.

i)
$$f(z) = \frac{z}{\overline{z}}$$
 ii) $f(z) = \sin z$

Q-6 Attempt all questions

a. Solve $y'' + 4y = \tan 2x$ by using the method of variation of parameters. (05)

b. Find eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$. (05)

Page 3 of 4

c. Find Laurent's expansion of $f(z) = \frac{7z-2}{(z+1)z(z-2)}$ in the annulus 1 < z+1 < 3 (04)

OR

Q-6 Attempt all Questions (14)

- **a.** Solve the simultaneous equations $\frac{dy}{dt} + 2y + \sin t = 0$, $\frac{dy}{dt} 2x \cos t = 0$; where x(0) = 0, y(0) = 1
- **b.** Solve the following system of linear equation x+y+z=3, x+2y+3z=4, x+4y+9z=6. (05)
- c. Find the bilinear transformation that maps the points 0,1,i in z-plane onto the points 1+i,-i,2-i in the w-plane. (04)

